Discussion of "A Model of Intermediation, Money, Interest and Prices" by Saki Bigio & Yuliy Sannikov

> Monika Piazzesi Stanford, CEPR & NBER

NBER Monetary Economics 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview

- model of money as a store of value in incomplete markets
- nice feature: risk choice about endowment
- Discussion:
 - study effects in an environment where financial structure is real

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

connect to literature on fiscal policy

Environment

• utility function over consumption

$$E\int_{0}^{\infty}e^{-\rho t}\frac{\left(c_{i,t}^{1-\gamma}-1\right)}{1-\gamma}dt$$

nontradable exogenous income

$$dw_{i,t} = y(u_{i,t}) dt + \sigma(u_{i,t}) dZ_{i,t}$$

- *dZ_{i,t}* idiosyncratic shock
- risk choice u_{i,t}: high mean y_H and volatility σ_H or low mean y_L and volatility σ_L = 0
- in every instant, choose consumption $c_{i,t}$ and $u_{i,t}$
- resource constraint: aggregate consumption = aggregate output, output endogenous!

First best allocation

- all households choose high risk: u_{i,t} = H mean y_H is high for everyone!
- perfect risk sharing: σ_H does not matter

- high output $Y_t = y_H$
- high consumption $C_t = y_H$

Incomplete markets

 financial structure as in Aiyagari: real noncontingent bonds save and borrow at real interest rate r up to a debt limit s̄

$$E\int_{0}^{\infty}e^{-\rho t}\frac{\left(c_{i,t}^{1-\gamma}-1\right)}{1-\gamma}dt$$

$$dw_{i,t} = y(u_{i,t}) dt + \sigma(u_{i,t}) dZ_{i,t}$$

$$ds_{i,t} = (r \ s_{i,t} - c_{i,t}) dt + dw_{i,t}$$

$$s_{i,t} \ge \bar{s}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• close to debt limit \bar{s} , precautionary motive is strong:

- households choose low risk $u_{i,t} = L$ with low mean y_L
- output and consumption are inefficiently low: $Y_t < y_H$
- equilibrium interest rate r is low

Comparison with other incomplete markets models

- Models with imperfect risk sharing without aggregate shocks
 - \blacktriangleright strong precautionary motive \rightarrow welfare loss
 - output may be distorted relative to first best
- Aiyagari 1994 endowment model
 - idiosyncratic shocks to endowment, real bonds have low rate
 - no aggregate output loss
- Aiyagari model with production
 - idiosyncratic skill shocks, capital and bonds are perfect substitutes
 - overaccumulation of capital, aggregate output inefficiently high
- Angeletos 2007 with sufficiently high EIS
 - capital and bonds are not perfect substitutes, low real interest rate
 - underaccumulation of capital, aggregate output inefficiently low
- Bigio & Sannikov model
 - ► risk choice makes aggregate output inefficiently low

Fiscal policy in incomplete markets

• Aiyagari & McGrattan 1998: debt in model with production

- capital and government debt are perfect substitutes for savers
- government debt B_t crowds out private capital K_t , reduces output
- equilibrium real rate depends on debt and taxes
- Bigio & Sannikov with government debt
 - household and government debt are perfect substitutes for savers

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- government debt allows precautionary savings
- equilibrium real rate depends on debt and taxes
- Fiscal policy can improve risk sharing and output distortion

Intermediation and spreads

- So far, banks are a veil
- Without government debt: competitive banks take household savings A_t and pay interest r^A , lend to households L_t and collect interest r^L , maximize

$$L_t\left(1+r^L\right)-A_t\left(1+r^A\right)$$

banks' FOCs equalize rates of return: $r^L = r^A$

• What if government forces banks to hold some government debt?

$$egin{split} \mathcal{L}_t \left(1+r^{\mathcal{L}}
ight)+\mathcal{B}_t \left(1+r^{\mathcal{B}}
ight)-\mathcal{A}_t \left(1+r^{\mathcal{A}}
ight)\ \mathcal{B}_t \geq
ho \mathcal{A}_t \end{split}$$

If constraint binds, $r^L > r^A > r^B$

- If ho=1, narrow banking, no loans to households $L_t=0$
- $\rightarrow\,$ Fiscal policy not only changes real rate but also spreads

Fiscal policy vs monetary policy

- So far, theory of fiscal policy, how do we think about monetary policy?
- recast model with nominal assets and nominal interest rates
- definition of equilibrium
 - given initial price level P₀, nominal interest rate path i^B_t, nominal supply of government debt M_t
 - ▶ find path of prices P_t so that real interest rate $r_t^B = i_t^B \dot{P}_t / P_t$ clears market for path of real debt M_t / P_t
- changing nominal rate has real effects holding fixed M_t
- interpretation of government debt as reserves
 - bank constraint from before = reserve requirement
 - government forces banks to also hold some reserves $\rho P_t A_t$
 - if constraint does not bind: $i^L = i^A = i^M$ floor system
 - if constraint binds: $i^L > i^A > i^M$ corridor system

Money as store of value

• reinterpretation of the model works if there are no other assets that dominate money in rate of return

- tradition of Bewley 1980, Samuelson 1968 money is the only asset, useful as store of value
- in data, rate of return dominance is important
 - floor system: spread between deposit rates, T-bill rates

T-bill rate and deposit rate in Floor System

(日) э

Money as store of value

- reinterpretation of the model works if there are no other assets that dominate money in rate of return
- tradition of Bewley 1980, Samuelson 1968 money is the only asset, useful as store of value
- in data, rate of return dominance is important
 - floor system: spread between deposit rates, T-bill rates
- can explain spread with money as medium of exchange
- Bewley/Samuelson not typically used for monetary policy but Aiyagari/OLG workhorse models for fiscal policy
- Bigio-Sannikov: very interesting insights about fiscal policy, risk choice, output and welfare