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Abstract
Providing feedback, both assessing final work
and giving hints to stuck students, is difficult
for open-ended assignments in massive online
classes which can range from thousands to mil-
lions of students. We introduce a neural network
method to encode programs as a linear mapping
from an embedded precondition space to an em-
bedded postcondition space and propose an al-
gorithm for feedback at scale using these lin-
ear maps as features. We apply our algorithm
to assessments from the Code.org Hour of Code
and Stanford University’s CS1 course, where we
propagate human comments on student assign-
ments to orders of magnitude more submissions.

1. Introduction
Online computer science courses can be massive with num-
bers ranging from thousands to even millions of students.
Though technology has increased our ability to provide
content to students at scale, assessing and providing feed-
back (both for final work and partial solutions) remains dif-
ficult. Currently, giving personalized feedback, a staple
of quality education, is costly for small, in-person class-
rooms and prohibitively expensive for massive classes. Au-
tonomously providing feedback is therefore a central chal-
lenge for at scale computer science education.

It can be difficult to apply machine learning directly to data
in the form of programs. Program representations such as
the Abstract Syntax Tree (AST) are not directly conducive
to standard statistical methods and the edit distance met-
ric between such trees are not discriminative enough to be
used to share feedback accurately since programs with sim-
ilar ASTs can behave quite differently and require different
comments. Moreover, though unit tests are a useful way to
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test if final solutions are correct they are not well suited for
giving help to students with an intermediate solution and
they are not able to give feedback on stylistic elements.

There are two major goals of our paper. The first is to au-
tomatically learn a feature embedding of student submit-
ted programs that captures functional and stylistic elements
and can be easily used in typical supervised machine learn-
ing systems. The second is to use these features to learn
how to give automatic feedback to students. Inspired by
recent successes of deep learning for learning features in
other domains like NLP and vision, we formulate a novel
neural network architecture that allows us to jointly opti-
mize an embedding of programs and memory-state in a
feature space. See Figure 1 for an example program and
corresponding matrix embeddings.

To gather data, we exploit the fact that programs are exe-
cutable — that we can evaluate any piece of code on an ar-
bitrary input (i.e., the precondition), and observe the state
after, (the postcondition). For a program and its constituent
parts we can thus collect arbitrarily many such precondi-
tion/postcondition mappings. This data provides the train-
ing set from which we can learn a shared representation
for programs. To evaluate our program embeddings we test
our ability to amplify teacher feedback. We use real stu-
dent data from the Code.org Hour of Code which has been
attempted by over 27 million learners making it, to the best
of our knowledge, the largest online course to-date. We
then show how the same approach can be used for sub-
missions in Stanford University’s Programming Method-
ologies course which has thousands of students and assign-
ments that are substantially more complex. The programs
we analyze are written in a Turing-complete language but
do not allow for user-defined variables.

Our main contributions are as follows. First, we present
a method for computing features of code that capture both
functional and stylistic elements. Our model works by si-
multaneously embedding precondition and postcondition
spaces of a set of programs into a feature space where pro-
grams can be viewed as linear maps on this space. Second,
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public class Program extends Karel {

   // Execution stars here
   public void run() {
      // Robot method
      putBeeper();
      placeRow();
      putBeeper();  
   }

   // User defined method
   private void placeRow() {
      while(isClear()){
         putBeeper();
         move();
      }
      putBeeper();
   }
}

placeRow

cond body

putBeeper

putBeeper move

while

Figure 1. We learn matrices which capture functionality. Left: a
student partial solution. Right: learned matrices for the syntax
trees rooted at each node of placeRow.

we show how our code features can be useful for automati-
cally propagating instructor feedback to students in a mas-
sive course. Finally, we demonstrate the effectiveness of
our methods on large scale datasets. Learning embeddings
of programs is fertile ground for machine learning research
and if such embeddings can be useful for the propagation of
teacher feedback this line of investigation will have a siz-
able impact on the future of computer science education.

2. Related Work
The advent of massive online computer science courses has
made the problem of automated reasoning with large code
collections an important problem. There have been a num-
ber of recent papers (Huang et al., 2013; Basu et al., 2013;
Nguyen et al., 2014; Brooks et al., 2014; Lan et al., 2015;
Piech et al., 2015) on using large homework submission
datasets to improve student feedback. The volume of work
speaks to the importance of this problem. Despite the re-
search efforts, however, providing quality feedback at scale
remains an open problem.

A central challenge that a number of papers address is that
of measuring similarity between source code. Some au-
thors have done this without an explicit featurization of
the code — for example, the AST edit distance has been
a popular choice (Huang et al., 2013; Rogers et al., 2014).
(Mokbel et al., 2013) explicitly hand engineered a small
collection of features on ASTs that are meant to be domain-
independent.

To incorporate functionality, (Nguyen et al., 2014) pro-
posed a method that discovers program modifications that
do not appear to change the semantic meaning of code. The
embedded representations of programs used in this paper
also capture semantic similarities and are more amenable
to prediction tasks such as propagating feedback. We ran
feedback propagation on student data using methods from

Nguyen et al and observe that embeddings enabled notable
improvement (see section 6.3).

Embedding programs has many crossovers with embedding
natural language artifacts, given the similarity between the
AST representation and parse trees. Our models are related
to recent work from the NLP and deep learning commu-
nities on recursive neural networks, particularly for model-
ing semantics in sentences or symbolic expressions (Socher
et al., 2013; 2011; Zaremba et al., 2014; Bowman, 2013).

Finally, representing a potentially complicated function
(which in our case is a program) as a linear operator act-
ing on a nonlinear feature space has also been explored in
different communities. The computer graphics community
have represented pairings of nonlinear geometric shapes
as linear maps between shape features, called functional
maps (Ovsjanikov et al., 2012; 2013). From the kernel
methods literature, there has also been recent work on rep-
resentations of conditional probability distributions as op-
erators on a Hilbert space (Song et al., 2013; 2009). From
this point of view, our work is novel in that it focuses on
the joint optimization of feature embeddings together with
a collection of maps so that the maps simultaneously “look
linear” with respect to the feature space.

3. Embedding Hoare Triples
Our core problem is to represent a program as a point in
a fixed-dimension real-valued space that can then be used
directly as input for typical supervised learning algorithms.

While there are many dimensions that “characterize” a pro-
gram including aspects such as style or time/space com-
plexity, we begin by first focussing on capturing the most
basic aspect of a program — its function. While captur-
ing the function of the program ignores aspects that can be
useful in application (such as giving stylistic feedback in
CS education), we discuss in later sections how elements
of style can be recaptured by modeling the function of sub-
programs that correspond to each subtree of an AST. Given
a program A (where we consider a program to generally be
any executable code whether a full submission or a subtree
of a submission), and a precondition P , we thus would like
to learn features of A that are useful for predicting the out-
come of running A when P holds. In other words, we want
to predict a postcondition Q out of some space of possible
postconditions. Without loss of generality we let P and Q
be real-valued vectors encapsulating the “state” of the pro-
gram (i.e., the values of all program variables) at a partic-
ular time. For example, in a grid world, this vector would
contain the location of the agent, the direction the agent
is facing, the status of the board and whether the program
has crashed. Figure 2 visualizes two preconditions, and the
corresponding postconditions for a simple program.

We propose to learn program features using a training set of
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Figure 2. Diagram of the model for a program A implementing a simple “step forward” behavior in a small 1-dimensional gridworld.
Two of the k Hoare triples that correspond with A are shown. Typical worlds are larger and programs are more complex.

(P,A,Q)-triples — so-called Hoare triples (Hoare, 1969)
obtained via historical runs of a collection of programs on
a collection of preconditions. We discuss the process by
which such a dataset can be obtained in Section 5. The
main approach that we espouse in this paper is to simul-
taneously find an embedding of states and programs into
feature space where pre and postconditions are points in
this space and programs are mappings between them.

The simple way that we propose to relate preconditions
to postconditions is through a linear transformation. Ex-
plicitly, given a (P,A,Q)-triple, if fP and fQ are m-
dimensional nonlinear feature representations of the pre
and postconditions P and Q, respectively, then we relate
the embeddings via the equation

fQ = MA · fP . (1)

We then take the m ×m matrix of coefficients MA as our
feature representation of the program A and refer to it as
the program embedding matrix. We will want to learn the
mapping into feature space f as well as the linear map MA

such that this equality holds for all observed triples and can
generalize to predict postcondition Q given P and A.

At first blush, this linear relationship may seem too limiting
as programs are not linear nor continuous in general. By
learning a nonlinear embedding function f for the pre and
postcondition spaces, however, we can capture a rich fam-
ily of nonlinear relationships much in the same way that
kernel methods allow for nonlinear decision boundaries.

As described so far, there remain a number of modeling
choices to be made. In the following, we elaborate further
on how we model the feature embeddings fP , and fQ of
the pre and postconditions, and how to model the program
embedding matrix MA.

3.1. Neural network encoding and decoding of states

We assume that preconditions have some base encoding as
a d-dimensional vector, which we refer to as P . For ex-
ample, in image processing courses, the state space could
simply be the pixel encoding of an image, whereas in the
discrete gridworld-type programming problems that we use
in our experiments, we might choose to encode the (x, y)-

coordinate and discretized heading of a robot using a con-
catenation of one-hot encodings. Similarly, we assume that
there is a base encoding Q of the postcondition.

We will focus our exposition in the remainder of our paper
on the case where the precondition space and postcondition
spaces share a common base encoding. This is particularly
appropriate to our experimental setting in which both the
preconditions and postconditions are representations of a
gridworld. In this case, we can use the same decoder pa-
rameters (i.e., W dec and bdec) to decode both from precon-
dition space and postcondition space — a fact that we will
exploit in the following section.

Inspired by nonlinear autoencoders, we parameterize a
mapping, called the encoder from precondition P to a non-
linear m-dimensional feature representation fP . As with
traditional autoencoders, we use an affine mapping com-
posed with an elementwise nonlinearity:

fP = φ(W enc · P + benc), (2)

whereW enc ∈ Rm×d, benc ∈ Rm, and φ is an elementwise
nonlinear function (such as tanh). At this point, we can use
the representation fP to decode or reconstruct the original
precondition as a traditional autoencoder would do using:

P̂ = ψ(W dec · fP + bdec), (3)

where W dec ∈ Rd×m, bdec ∈ Rd, and ψ is some (po-
tentially different) elementwise nonlinear function. More-
over, we can push the precondition embedding fP through
Equation 1, and decode the postcondition embedding fQ =
MA · fP . This mapping which reconstructs the postcondi-
tion Q, the decoder, takes the form:

Q̂ = ψ(W dec · fQ + bdec), (4)

= ψ(W dec ·MA · fP + bdec). (5)

Figure 2 diagrams our model on a simple program. Note
that it is possible to swap in alternative feature represen-
tations. We have experimented with using a deep, stacked
autoencoder however our results have not shown these to
help much in the context of our datasets.
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3.2. Nonparametric model of program embedding

To encode the program embedding matrix, we propose
a simple nonparametric model in which each program in
the training set is associated with its own embedding ma-
trix. Specifically, if the collection of unique programs is
{A1, . . . , Am}, then for each Ai, we will associate a ma-
trix Mi. The entire parameter set for our nonparamet-
ric matrix model (henceforth abbreviated NPM) is thus:
Θ = {W dec,W enc, benc, bdec} ∪ {Mi : i = 1, . . . ,m}.

To learn the parameters, we minimize a sum of three terms:
(1) a prediction loss `pred which quantifies how well we
can predict postcondition of a program given a precondi-
tion, (2) an autoencoding loss `auto which quantifies how
good the encoder and decoder parameters are for recon-
structing given preconditions, and (3) a regularization term
R. Formally, given training triples {(Pi, Ai, Qi)}ni=1, we
can minimize the following objective function:

L(Θ) =
1

n

n∑
i=1

`pred(Qi, Q̂i(Pi, Ai; Θ))

+
1

n

n∑
i=1

`auto(Pi, P̂i(Pi,Θ)) +
λ

2
R(Θ),

(6)

where R is a regularization term on the parameters, and λ
a regularization parameter. In our experiments, we use R
to penalize the sum of the L2 norms of the weight matrices
(excluding the bias terms benc and bdec).

Any differentiable loss can conceptually be used for `pred

and `auto. For example, when the top level predictions, P̂
or Q̂, can be interpreted as probabilities (e.g., when φ is the
Softmax function), we use a cross-entropy loss function.

Informally speaking, one can think of our optimization
problem (Equation 6) as trying to find a good shared rep-
resentation of the state space — shared in the sense that
even though programs are clearly not linear maps over the
original state space, the hope is that we can discover some
nonlinear encoding of the pre and postconditions such that
most programs simultaneously “look” linear in this new
projected feature space. As we empirically show in Sec-
tion 6, such a representation is indeed discoverable.

We run joint optimization using minibatch stochastic gra-
dient descent without momentum, using ordinary back-
propagation to calculate the gradient. We use random
search (Bergstra & Bengio, 2012) to optimize over hyper-
parameters (e.g, regularization parameters, matrix dimen-
sions, and minibatch size). Learning rates are set using
Adagrad (Duchi et al., 2011). We seed our parameters us-
ing a “smart” initialization in which we first learn an au-
toencoder on the state space, and perform a vector-valued
ridge regression for each unique program to extract a ma-
trix mapping the features of the precondition to the features

of the postcondition. The encoder and decoder parameters
and the program matrices are then jointly optimized.

3.3. Triple Extraction

For a given program S we extract Hoare triples by execut-
ing it on an exemplar set of unit tests. These tests span
a variety of reasonable starting conditions. We instrument
the execution of the program such that each time a subtree
A ⊂ S is executed, we record the value, P , of all variables
before execution, and the value, Q, of all variables after ex-
ecution and save the triple (P , A, Q). We run all programs
on unit tests, collecting triples for all subtrees. Doing so
results in a large dataset {(Pi, Ai, Qi)}ni=1 from which we
collapse equivalent triples. In practice, some subtrees, es-
pecially the body of loops, generate a large (potentially in-
finite) number of triples. To prevent any subtree from hav-
ing undue influence on our model we limit the number of
triples for any subtree.

Collecting triples on subtrees, as opposed to just collecting
triples on complete programs, is critical since it allows us
to learn embeddings not just for the root of a program AST
but also for the constituent parts. As a result, we retain data
on how a program was implemented, and not just on its
overall functionality, which is important for student feed-
back as we discuss in the next section. Collecting triples
on subtrees also means we are able to optimize our embed-
dings with substantially more data.

4. Feedback Propagation
The result of jointly learning to embed states and a corpus
of programs is a fixed dimensional, real-valued matrix MA

for each subtreeA of any program in our corpus. These ma-
trices can be cooperative with machine learning algorithms
that can perform tasks beyond predicting what a program
does. The central application in this paper is the force
multiplication of teacher-provided feedback where an ac-
tive learning algorithm interacts with human graders such
that feedback is given to many more assignments than the
grader annotates. We propose a two phase interaction. In
the first phase, the algorithm selects a subset of exemplar
programs for graders to apply a finite set of annotations.
Then in the second phase, the algorithm uses the human
provided annotations as supervised labels with which it can
learn to predict feedback for unlabelled submissions. Each
program is annotated with a set H ⊂ L where L is a dis-
crete collection ofN possible annotations. The annotations
are meant to cover a range of comments a grader could ap-
ply, including feedback on style, strategy and functionality.
For each ungraded submission, we must then decide which
of the N labels to apply. As such, we view feedback prop-
agation as N binary classification tasks.

One way of propagating feedback would be to use the el-
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ements of the embedding matrix of the root of a program
as features and then train a classifier to predict appropri-
ate feedback for a given program. However, the matrices
we have learned for programs and their subtrees have been
trained only to predict functionality. Consequently, any two
programs that are functionally indistinguishable would be
given the same instructor feedback under this approach,
ignoring any strategic or stylistic differences between the
programs.

4.1. Incorporating structure via recursive embedding
To recapture the elements of program structure and style
that are critical for student feedback, our approach to pre-
dict feedback uses the embedding matrices learned for the
NPM model, but incorporates all constituent subtrees of
a given AST. Specifically, using the embedding matrices
learned in the NPM model (which we henceforth denote as
MNPM

A for a subtree A), we now propose a new model
based on recursive neural networks (called the NPM-RNN
model) in which we parametrize a matrix MA in this new
model with an RNN whose architecture follows the abstract
syntax tree (similar to the way in which RNN architec-
tures might take the form of a parse tree in an NLP set-
ting (Socher et al., 2013)).

In our RNN based model, a subtree of the AST rooted
at node j is represented by a matrix which is computed
by combining (1) representations of subtrees rooted at the
children of j, and (2) the embedding matrix of the subtree
rooted at node j learned via the NPM model. By incorpo-
rating the embedding matrix from the NPM model, we are
able to capture the function of every subtree in the AST.

Formally, we will assume each node is associated with
some type in set T = {ω1, ω2, . . . }. Concretely, the type
set might be the collection of keywords or built-in func-
tions that can be called from a program in the dataset, e.g.,
T = {repeat,while, if , . . . }. A node with type ω is as-
sumed to have a fixed number, aω , of children in the AST
— for example, a repeat node has two children, with one
child holding the body of a repeat loop and the second rep-
resenting the number of times the body is to be repeated.

The representation of node j with type ω is then recursively
computed in the NPM-RNN model via:

a(j) = φ

(
aω∑
i=1

Wω
i · a(ci[j]) + bω + µMNPM

j

)
, (7)

where: φ is a nonlinearity (such as tanh), ci[j] indexes over
the aω children of node j, and MNPM

j is the program em-
bedding matrix learned in the NPM model for the subtree
rooted at node j. We remind the reader that the activation
a(j) at each node is anm×mmatrix. Leaf nodes of type ω
are simply associated with a single parameter matrix Wω .

In the NPM-RNN model, we have parameter matrices

Statistic Ω1 Ω1 Ω1

Num Students >11 million 2,710 2,710
Unique Programs 210,918 6,674 63,820
Unique Subtrees 311,198 15,550 198,918
Unique Triples 5,334,452 476,502 4,211,150
Unique States 149 1,399 114,704
Unique Annotations 15 12 14

Table 1. Dataset summary. Programs are considered identical if
they have equal ASTs. Unique states are different configurations
of the gridworld which occur in student programs.

Wω, bω ∈ Rm×m for each possible type ω ∈ T . To
train the parameters, we first use the NPM model to com-
pute the embedding matrix MNPM

j for each subtree. Af-
ter fixing Mj , we optimize (as with the NPM model) with
minibatch stochastic gradient descent using backpropaga-
tion through structure (Goller & Kuchler, 1996) to com-
pute gradients. Instead of optimizing for predicting post-
condition, for NPM-RNN, we optimize for each of the bi-
nary prediction tasks that are used for feedback propaga-
tion given the vector embedding at the root of a program.
We used hyper-parameters learned in the RNN model op-
timization since feedback optimization is performed over
few examples and without a holdout set.

Finally, feedback propagation has a natural active learning
component: intelligently selecting submissions for human
annotation can potentially save instructors significant time.
We find that in practice, running k-means on the learned
embeddings, and selecting the cluster centroids as the set of
submissions to be annotated works well and leads to signif-
icant improvements in feedback propagation over random
subset selection. Surprisingly, having humans annotate the
most common programs performs worse than the alterna-
tives, which we observe to be due to the fact that the most
common submissions are all quite similar to one another.

5. Datasets
We evaluate our model on three assignments from two dif-
ferent courses, Code.org’s Hour of Code (HOC) which
has submissions from over 27 million students and Stan-
fords Programming Methodology course, a first-term intro-
ductory programming course, which has collected submis-
sions over many years from almost three thousand students.
From these two classes, we look at three different assign-
ments. As in many introductory programming courses, the
first assignments have the students write standard program-
ming control flow (if/else statements, loops, methods) but
do not introduce user-defined variables. The programs for
these assignments operate in maze worlds where an agent
can move, turn, and test for conditions of its current loca-
tion. In the Stanford assignments, agents can also put down
and pick up beepers, making the language Turing complete.
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Specifically, we study the following three problems:

Ω1: The 18th problem in the Hour of Code (HOC). Students
solve a task which requires an if/else block inside of a while
loop, the most difficult concept in the Hour of Code.

Ω2: The first assignment in Stanford’s course. Students
program an agent to retrieve a beeper in a fixed world.

Ω3: The fourth assignment in Stanford’s course. Students
program an agent to find the midpoint of a world with un-
known dimension. There are multiple strategies for this
problem and many require O(n2) operations where n is
the size of the world. The task is challenging even for those
who already know how to program.

In addition to the final submission to any problem, from
each student we also collect partial solutions as they
progress from starter code to final answer. Table 1 summa-
rizes the sizes of each of the datasets. For all three assign-
ments studied, students take multiple steps to reach their
final answer and as a result most programs in our datasets
are intermediate solutions that are not responsive to unit
tests that simply evaluate correctness. The code.org dataset
is available at code.org/research.

For all assignments we have both functional and stylistic
feedback based on class rubrics which range from observa-
tions of solution strategy, to notes on code decomposition,
and tests for correctness. The feedback is generated for
all submissions (including partial solutions) via a complex
script. The script analyzes both the program trees and the
series of steps a student took to assign annotations. In gen-
eral, a script, no matter how complex, does not provide per-
fect feedback. However the ability to recreate these com-
plex annotations allows us to rigorously evaluate our meth-
ods. An algorithm that is able to propagate such feedback
should also be able to propagate human quality labels.

6. Results
We rely on a few baselines against which to evaluate our
methods, but the main baseline that we compare to is a sim-
plification of the NPM-RNN model (which we will call,
simply, RNN) in which we drop the program embedding
terms Mj from each node (cf. Eqn. 7).

The RNN model can be trained to predict postconditions
as well as to propagate feedback. It has much fewer pa-
rameters than the NPM (and thus NPM-RNN) model being
a strictly parametric model, and is thus expected to have
an advantage in smaller training set regimes. On the other
hand, it is also a strictly less expressive model and so the
question is: how much does the expressive power of the
NPM and NPM-RNN models actually help in practice? We
address this question amongst others using two tasks: pre-
dicting postcondition and propagating feedback.

Algorithm Ω1 Ω2 Ω3

NPM 95% (98%) 87% (98%) 81% (94%)
RNN 96% (97%) 94% (95%) 46% (45%)
Common 58% 51% 42%

Table 2. Test set postcondition prediction accuracy on the three
programming problems. Training set results in parentheses.

6.1. Prediction of postcondition

To understand how much functionality of a program is cap-
tured in our embeddings, we evaluate the accuracy to which
we can use the program embedding matrices learned by the
NPM model to predict postconditions — note, however,
that we are not proposing to use the embeddings to predict
post-conditions in practice. We split our observed Hoare
triples into training and test sets and learn our NPM model
using the training set. Then for each triple (P,A,Q) in
the test set we measure how well we can predict the post-
condition Q given the corresponding program A and pre-
condition P . We evaluate accuracy as the average number
of state variables (e.g. row, column, orientation and loca-
tion of beepers) that are correctly predicted per triple, and
in addition to the RNN model, compare against the base-
line method “Common” where we select the most com-
mon postcondition for a given precondition observed in the
training set. As our results in Table 2 show, the NPM model
achieves the best training accuracy (with 98%, 98% and
94% accuracy respectively, for the three problems). For
the two simpler problems, the parametric (RNN) model
achieves slightly better test accuracy, especially for prob-
lem Ω2 where the training set is much smaller. For the most
complex programming problem, Ω3, however, the NPM
model substantially outperforms other approaches.

6.2. Composability of program embeddings

If we are to represent programs as matrices that act on a
feature space, then a natural desiderata is that they “com-
pose well”. That is, if program C is functionally equiva-
lent to running program B followed by program A, then
it should be the case that MC ≈ MB ·MA. To evaluate
the extent to which our program embedding matrices are
composable, we use a corpus of 5000 programs that are
composed of a subprogram A followed by another subpro-
gram B (Compose-2). We then compare the accuracy of
postcondition prediction using the embedding of an entire
program MC against the product of embeddings MB ·MA.
As Table 3 shows, the accuracy using the NPM model for
predicting postcondition is 94% when using the matrix for
the root embedding. Using the product of two embedding
matrices, we see that accuracy does not fall dramatically,
with a decoding accuracy of 92%. When we test programs
that are composed of three subprograms, A followed by B,
then C (Compose-3), we see accuracy drop only to 83%.

code.org/research
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Test Direct NPM NPM-0 RNN Common

Compose-2 94% 92% 87% 42% 39%
Compose-3 94% 83% 72% 28% 39%

Table 3. Evaluation of composability of embedding matrices: Ac-
curacy on 5k random triples with ASTs rooted at block nodes.
NPM-0 does not jointly optimize.

By comparison, the embeddings computed using the RNN,
a more constrained model, do not seem to satisfy com-
posability. We also compare against NPM-0, which is the
NPM model using just the weights set by the smart initial-
ization (see Section 3.2). While NPM-0 outperforms the
RNN, the full nonparametric model (NPM) performs much
better, suggesting that the joint optimization (of state and
program embeddings) allows us to learn an embedding of
the state space that is more amenable to composition.

6.3. Prediction of Feedback

We now use our program embedding matrices in the feed-
back propagation application described in Section 4. The
central question is: given a budget of K human annotated
programs (we set K = 500), what fraction of unannotated
programs can we propagate these annotations to using the
labelled programs, and at what precision? Alternatively,
we are interested in the “force multiplication factor” — the
ratio of students who receive feedback via propagation to
students to receive human feedback.

Figure 3 visualizes recall and precision of our experiment
on each of the three problems. The results translate to
214×, 12× and 45× force multiplication factors of teacher
effort for Ω1, Ω2 and Ω3 respectively while maintaining
90% precision. The amount to which we can force multi-
ply feedback depends both on the recall of our model and
the size of the corpus to which we are propagating feed-
back. For example, though Ω2 had substantially higher
recall than Ω1, in Ω2 the grading task was much smaller.
There were only 6,700 unique programs to propagate feed-
back to, compared to Ω1 which had over 210,000. As with
the previous experiment, we observe that for both Ω1 and
Ω2, the NPM-RNN and RNN models perform similarly.
However for Ω3, the NPM-RNN model substantially out-
performs all alternatives.

In addition to the RNN, we compare our results to three
other baselines: (1) Running unit tests, (2) a “Bag-of-
Trees” approach and (3) k-nearest neighbor (KNN) with
AST edit distances. The unit tests unsurprisingly are per-
fect at recognizing correct solutions. However, since our
dataset is largely composed of intermediate solutions and
not final submissions (especially for Ω1 and Ω3), unit tests
are not a particularly effective way to propagate annota-
tions. The Bag-of-Trees approach, where we trained a
Naı̈ve Bayes model to predict feedback conditioned on the

set of subtrees in a program, is useful for feedback prop-
agation but we observe that it underperforms the embed-
ding solutions on each problem. Moreover, we extended
this baseline by amalgamating functionally equivalent code
(Nguyen et al., 2014). Using equivalences found using sim-
ilar amount of effort as in previous work, we are able to
achieve 90% precision with recall of 39%, 48% and 13%,
for the three problems respectively. While this improves
the baseline, NPM-RNN obtains almost twice as much re-
call on all problems. Finally, we find KNN with AST edit
distances to be computationally expensive to run and highly
ineffective at propagating feedback — calculating edit dis-
tance between all trees requires 20 billion comparisons for
Ω1 and 1.5 billion comparisons for Ω3. Moreover, the high-
est precision achieved by KNN for Ω3 is only 43% (note
that the cut-off for the x-axis in Figure 3 is 80%) and at
that precision only has a recall of 1.3%.

The feedback that we propagate covers a range of stylis-
tic and functional annotations. To further understand the
strengths and weaknesses of our solution, we explore the
performance of the NPM-RNN model on each of the nine
possible annotations for Ω3. As we see in Figure 4(c), our
model performs best on functional feedback with an av-
erage 44% recall at 90% precision, followed by strategic
feedback and performs worst at propagating purely stylis-
tic annotations with averages of 31% and 8% respectively.
Overall propagation for Ω3 is 33% recall at 90% precision.

6.4. Code complexity and performance
The results from the above experiments are suggestive that
the nonparametric models perform better on more complex
code while the parametric (RNN) model performs better
on simpler code. To dig deeper, we now look specifically
into how our performance depends on the complexity of
programs in our corpus — a question that is also central
to understanding how our models might apply to other as-
signments. We focus on submissions for Ω3, which cover a
range of complexities, from simple programs to ones with
over 50 decision points (loops and if statements). The dis-
tribution of cyclomatic complexity (McCabe, 1976), a mea-
sure of code structure, reflects this wide range (shown in
gray in Figures 4(a),(b)). We first sort and bin all submis-
sions to Ω3 by cyclomatic complexity into ten groups of
equal size. Figures 4(a),(b) plot the results of the post-
condition prediction and force multiplication experiments
run individually on these smaller bins (still using a holdout
set, and a budget of 500 graded submissions). While the
RNN model performs better for simple programs (with cy-
clomatic complexity≤ 6), both train and test accuracies for
the RNN degrade dramatically as programs become more
complicated. On the other hand, while the NPM model
overfits, it maintains steady (and better) performance in test
accuracy as complexity increases. This pattern may help to
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Figure 3. Recall of feedback propagation as a function of precision for three programming problems: (a) Ω1, (b) Ω2, and (c) Ω3. On
each, we compare our NPM-RNN against the RNN method and two other baselines (bag of trees and unit tests).
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Figure 4. (a) NPM and RNN postcondition prediction accuracy as a function of cyclomatic complexity of submitted programs; (b) NPM-
RNN and RNN feedback propagation recall (at 90% precision). Note that the ratio of human graded assignments to number of programs
is much higher in this experiment than Figure 3; (c) A breakdown of the accuracy of the nonparametric model by feedback type for Ω3

(black dots). The gray bars histogram the feedback types by frequency.

explain our observations that the RNN is more accurate for
force multiplying feedback on simple problems.

7. Discussion
In this paper we have presented a method for finding simul-
taneous embeddings of preconditions and postconditions
into points in shared Euclidean space where a program can
be viewed as a linear mapping between these points. These
embeddings are predictive of the function of a program,
and as we have shown, can be applied to the the tasks of
propagating teacher feedback. The courses we evaluate our
model on are compelling case studies for different reasons.
Tens of millions of students are expected to use Code.org
next year, meaning that the ability to autonomously provide
feedback could impact an enormous number of people. The
Stanford course, though much smaller, highlights the com-
plexity of the code that our method can handle.

There remains much work towards making these embed-
dings more generally applicable, particularly for domains
where we do not have tens of thousands of submissions per
problem or the programs are more complex. For settings
where users can define their own variables it would be nec-

essary to find a novel method for mapping program mem-
ory into vector space. An interesting future direction might
be to jointly find embeddings across multiple homeworks
from the same course, and ultimately, to even learn using
arbitrary code outside of a classroom environment. To do
so may require more expressive models. From the stand-
point of purely predicting program output, the approaches
described in this paper are not capable of representing ar-
bitrary computation in the sense of the Church-Turing the-
sis. However, there has been recent progress in the deep
learning community towards models capable of simulating
Turing machines (Graves et al., 2014). While this “Neural
Turing Machines” line of work approaches quite a differ-
ent problem than our own, we remark that such expressive
representations may indeed be important for statistical rea-
soning with arbitrary code databases.

For the time being, feature embeddings of code can at least
be learned using the massive online education datasets that
have only recently become available. And we believe that
these features will be useful in a variety of ways — not just
in propagating feedback, but also in tasks such as predict-
ing future struggles and even student dropout.
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