
Pensieve: Feedback on coding process for novices
Lisa Yan

Stanford University
yanlisa@stanford.edu

Annie Hu
Stanford University

anniehu@stanford.edu

Chris Piech
Stanford University

piech@cs.stanford.edu

ABSTRACT
In large undergraduate computer science classrooms, student learn-
ing on assignments is often gauged only by the work on their final
solution, not by their programming process. As a consequence,
teachers are unable to give detailed feedback on how students im-
plement programming methodology, and novice students often lack
ametacognitive understanding of how they learn. We introduce Pen-
sieve as a drag-and-drop, open-source tool that organizes snapshots
of student code as they progress through an assignment. The tool is
designed to encourage sit-down conversations between student and
teacher about the programming process. The easy visualization of
code evolution over time facilitates the discussion of intermediate
work and progress towards learning goals, both of which would
otherwise be unapparent from a single final submission. This paper
discusses the pedagogical foundations and technical details of Pen-
sieve and describes results from a particular 207-student classroom
deployment, suggesting that the tool has meaningful impacts on
education for both the student and the teacher.

CCS CONCEPTS
• Social and professional topics→ CS1; Student assessment;

KEYWORDS
Programming courses; assessment; pedagogy; formative feedback;
metacognition
ACM Reference Format:
Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on coding
process for novices. In Proceedings of 50th ACM Technical Symposium on
Computer Science Education, Minneapolis, MN, USA, February 27–March 2,
2019 (SIGCSE’19), 7 pages. https://doi.org/10.1145/3287324.3287483

1 INTRODUCTION
Assignment feedback is a critical component of student learn-
ing [19, 34]. Given that one of the primary learning goals of CS1 is
to teach students how to solve programming challenges, it would
be immensely useful to provide formative feedback on how a stu-
dent worked through solving an assignment. Yet for a variety of
reasons, many contemporary classrooms only provide summative
feedback on a student’s final answer [23, 41]. The hours during
which a student actively learns and interacts with the material

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287483

are manifested in a single deliverable—a single snapshot into the
student’s thinking—from which an instructor must glean enough
information to discuss student process. This misses the opportu-
nity to give students feedback on their problem solving approaches
and to help students develop metacognitive abilities [5, 9, 30, 34].
However, providing feedback on a final student submission is hard,
and providing feedback on the hundreds of steps a student takes to
get to their answer seems prohibitively difficult.

To enable feedback on student progress, we built Pensieve, a
simple-to-use tool that provides an interactive visualization of stu-
dent work history over the course of completing an assignment
(Figure 1). Pensieve gives both students and teachers a means to see
assignment progress—from the time a student first looked at assign-
ment starter code towhen they submit the final product—facilitating
conversation around metacognition and student learning that is
critical for introductory computer science learners. When teach-
ers can observe a student’s process, they are able to give timely
feedback addressing student mistakes and to adjust and person-
alize their own teaching [6]. When students observe their own
process—even in the absence of the instructor—they can internal-
ize metacognitive observations [9]. Through our streamlined user
interface, understanding progress becomes quick and feasible, even
in a large classroom.

In this paper, we begin with an overview of the pedagogical
motivations for the Pensieve tool (Sections 2 and 3). We then discuss
the technical implementation details in Section 4. In Section 5, we
share positive experiences by both teachers and students when
Pensieve was deployed in a 10-week course. The tool was correlated
with significantly better student performance, with a particularly
large benefit for students with the least programming background.
Furthermore, there was almost no additive effort for the teaching
assistants to learn the tool, nor was it difficult to incorporate into
the existing course pipeline. Finally, we close in Section 6 with best
practices and discussion of how our tool can be used in many CS1
classrooms today. Pensieve is an open source tool which you can
download and modify.1

2 PEDAGOGY AND MOTIVATION
Pensieve aims to “push back” somewhat against the trend of auto-
mated grading tools in classrooms by thoughtfully integrating a
human grader into assignment feedback. We designed the tool with
several objectives in mind:

(1) Foster metacognitive skills
(2) Identify methodology errors early
(3) Counteract plagiarism effects in a large classroom
(4) Gentle introduction of version control.
Our first objective is to develop metacognition in the way stu-

dents learn computer science. A key finding of a landmark National

1https://github.com/chrispiech/pensieve

https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3287324.3287483
https://github.com/chrispiech/pensieve

Pensieve

Student completes an assignment.
Hundreds of intermediate “process”

steps are auto-saved as git repo.

Teaching assistant spends 5 to 10
mins observing the student’s

process via Pensieve.

The teaching assistant spends 10
mins giving in-person feedback on
the student’s process via Pensive.

Student submits “process” steps
along with final answer. Pensieve
optionally precomputes figures.

2 3 41

Student completes an assignment.
Hundreds of intermediate “process”

steps are auto-saved into a repository.

Student submits “process”
repository along with final answer.
Pensieve optionally pre-runs output.

Teaching assistant spends 5 to 10
mins observing the student’s

process via Pensieve.

The teaching assistant spends
10 mins. giving in-person feedback on

the student’s process via Pensieve.

Figure 1: Pensieve allows teachers to visualize and give feedback on how a student progresses through an assignment.

Academy of Sciences study on learning science was the effective-
ness of a metacognitive approach to instruction [7]. Metacognition
is a learning theory for “thinking about thinking.” To most effec-
tively learn, students must not only understand the problem but
also understand and reflect on where they are in the problem-
solving process. Metacognitive practices directly correspond to
increasing students’ performance in evaluating concepts, one of
the highest cognitive skill levels in Bloom’s Revised Taxonomy for
learning [2, 20, 39]. Research has also shown that students with
stronger metacognitive awareness tend to perform better on pro-
gramming tasks [4, 12, 18]. Importantly, metacognition directly
supports the concept of a growth mindset, the theory that intelli-
gence can be developed with experience [15]. Students who believe
that ability is a fixed trait are at a significant disadvantage in STEM
fields compared to their peers who believe in a growth mindset.

A related objective of our tool is to encourage early identification
of methodology errors. Most assignments in large-scale computer
science classes are assessed summatively: the teaching assistant sees
and grades only the students’ final submission. However, research
has conclusively shown that nongraded formative assessments, or
ongoing assessments designed to make students’ thinking visible
to both teachers and students, are key to improved learning [7, 22].
They allow teachers to identify which thought processes work
for students and to provide useful, directed feedback so that each
student can improve. As such, this goal is intertwined with our goal
of fostering metacognition in computer science—through reflecting
critically on their programming process, students will be able to
both identify areas for improvement and understand how to achieve
that improvement earlier.

Finally, by emphasizing the importance of the learning process,
we hope that Pensieve can act as a preemptive deterrent to potential
plagiarism. Students who plagiarize all or parts of their assignments
stunt their metacognitive development in programming and reap
fewer benefits from formative feedback. They may also become
stuck in a cycle of plagiarism in which they are increasingly unable
to complete work independently [40]. Many current approaches
to combating plagiarism in large CS classrooms focus on detecting
similar code in the final submission; however, this further reinforces
the importance of the final grade received above the intrinsic value
of learning how to learn, a way of thinking that underlies much stu-
dent plagiarism [8]. We hope that by monitoring the development
process [40], we can better support students who may otherwise
feel overwhelmed and driven to plagiarize code.

3 RELATEDWORK
In many large classrooms, the technology focus is on Automated
Assessment Tools (AATs), which relegate a significant portion of the
feedback pipeline to tools that support teacher- or student-written
unit tests [1, 16, 21]. Larger classrooms like massive open online
courses push towards full-automation by systems like intelligent
tutoring systems to personalize the learning experience for online
students [14]. In our study, we focus on large CS1 courses that have
in-classroom human teacher support. While there is research on
how to automate computer agents to personalize debugging hints
per student [36], our work seeks solutions that allow humans to
provide higher-level feedback on problem solving process.

Novice programmers benefit from metacognitive awareness.
Loksa et al. found that students who are trained in problem solving
procedures are more productive and have higher self-efficacy [28].
There are several metacognitive tools that have been studied in a CS
context: Lee et al. found that personifying the programming process
increases online engagement with a coding task [26]; Prather et al.
discuss how metacognitive awareness ties into how students use
AATs [32]; and Marceau et al. studied how novice programmers
interact with error messages [29]. Outside of CS classrooms, Tanner
et al. reported on generalizable teaching practices for promoting
metacognition, such as instructor modeling of problem solving,
tools to help students identify learning strategies, and guided re-
flection [38]. Pensieve incorporates all three of these strategies by
engaging students—with the support of teaching assistants—with
their own metacognitive understanding of computer science.

Formative feedback in the classroom can have a variety of im-
pacts [3]. Van der Kleij et al. found that detailed feedback con-
tributes more to student learning than feedback on correctness
does [41]. Students also benefit more from an assignment when
they have interactive, dialogue-based critiques with peers or instruc-
tors [9, 30]. We design our tool with the awareness that feedback
is not a one-sided conversation; teachers should discuss with the
students to promote student self-regulation of learning for the rest
of the course [6].

Other classrooms have used version control systems to give for-
mative feedback, as version control simplifies management of large
courses [11] and makes it easier to identify problems in work habits
and progress [24, 25, 35]. We take a slightly different approach,
placing less emphasis on learning how to manage a version control
system than on enabling self-evaluation from students and good
feedback from teachers [27]. Our tool focuses on surfacing this
information in a clear manner, providing a light introduction to the
benefits of version control.

Figure 2: Diagram of Pensieve display, composed of four main components (discussed more in Section 4): Assignment timeline
(left), Current snapshot information (center), Snapshot functionality (top right), and Workflow graphs (bottom right).

4 PENSIEVE DETAILS
Pensieve is primarily designed for educators to easily give feedback
on student process. A pipeline of how it fits into a classroom is
shown in Figure 1. As a student works on an assignment, their
process is recorded as a local repository which is submitted along
with their final answer. A screenshot of the Pensieve tool is shown
in Figure 2. To use Pensieve, loaded with a student’s process, the
instructor interacts with the four main components of the tool: a
timeline of snapshots for this program file (left panel), a selectable,
highlightable text view of the snapshot code (center), the visual
output corresponding to running the snapshot code (top-right), and
metrics of this code file over time (bottom-right).

As part of our efforts to minimize instructor workload, Pensieve
is designed to be a drag-and-drop, out-of-the-box tool for viewing
student assignment progress. It is ported as a JAR file; an instructor
can simply download the JAR into a student assignment folder, run
it, and begin viewing student intermediate snapshot data.

4.1 Tool Implementation
The only required folder for Pensieve to work is a repository of
timestamped code snapshots of a single student working on an
assignment—data which is increasingly available to educators [33].
We currently represent timestamped code using the git abstrac-
tion: we customized the Eclipse IDE students use to automatically

save student code at compile time (as described in [31]). However,
Pensieve depends neither on the use of Eclipse nor Java in the class-
room; it merely requires that student work be cached over time in a
timestamped code folder. Our tool can work at a coarser granularity,
such as on assignments that require students to commit periodically
to an online storage platform like GitHub. The tool can also operate
on setups like those on Code.org, which save snapshots whenever
students run their code. We utilize the timestamped code repository
to analyze both student code progress and timing information. In
this section, we discuss interacting with the Pensieve tool for a
single file in the timestamped code folder.

4.1.1 Assignment timeline. The leftmost panel of the tool (Figure
2) displays all captured snapshots for a given student file. Each entry
in the timeline contains the snapshot index (in temporal order), the
amount of time spent so far on this file, break time, and an optional
color key indicating functional progress (discussed more in Section
4.1.4). Time spent on the assignment is calculated as an aggregate of
relative timing information between this snapshot and the previous
one. We mark break time in parentheses, where a break occurs
when two consecutive snapshots’ timestamps differ by more than
10 minutes. By browsing the timeline, an instructor can infer where
students took substantial breaks to get a cursory glance of which
snapshots would be worth closer attention.

4.1.2 Current snapshot information. Clicking on a snapshot en-
try in the Assignment timeline panel displays that snapshot’s code
in the center panel with appropriate syntax highlighting. Other
than syntax and comment highlighting, the center panel is plain-
text, allowing an instructor to select and copy code if additional
verification is needed. The top-right panel is used to display this
code’s output when compiled and run; if the code has a compile or
runtime error, nothing is shown. The example assignment shown
in Figure 2 draws a pyramid-like object using Java’s ACM library.
It is important to note that Pensive is not running snapshot code
live; the compiling and running of any student code is done in a
preprocessing step. The details of designing such a preprocessor
are discussed more in Section 4.1.4.

4.1.3 Workflow graphs. The bottom-right panel contains time
series of various file metrics to visualize student progress and style
over time. The SourceLength graph shown in Figure 2 displays
code length (in green) and comment length (in yellow) in number
of characters, as well as a red, vertical indicator of the currently
selected snapshot’s metrics. Another graph displays indentation
errors over time—which are allowed in Java but are indicative of
messy code—and a third graph displays custom metadata from
the timestamped code directory; for example, our repositories also
record the number of code runs per snapshot. Instructors can easily
toggle between these time series, which are intended to highlight
student work patterns, such as when they started thinking about
good style and indentation, or whether the majority of their work
and code changes were concentrated at the end of the timeline.

4.1.4 Snapshot functionality. The top-right panel visualizes the
output of the currently selected code, if there were no compile or
runtime errors. All outputs for all snapshots are run and saved
prior to downloading and running Pensieve in a preprocessing step.
In our implementation, this is performed on the course servers
after students submit the assignment and before instructors begin
grading. The preprocessor compiles and run each snapshot in each
file; if there are no errors, then the output is saved into a separate
folder. The Pensieve program then interfaces with the folder of
outputs via a JSON metadata lookup, which associates the snapshot
(represented by a (Unix Epoch timestamp, original filename) tuple)
with the following features: a flag for compile error, a flag for
runtime error, the output file path, and a milestone metric, of which
the latter two are only valid if both error flags are off. Any additional
metadata per snapshot can also be saved in this JSON lookup file.

In our example assignment, we mainly use graphics exercises
based on the Java ACM library. As a result, output file paths point
to saved output PNG files. However, one could easily run and save
console program output as plain-text log-files, which can be dis-
played in the top-right panel of Pensieve with minor modifications.
Milestone metrics are computed based on each snapshot’s output; if
there are unit tests for the assignment, this can simply be the num-
ber of passed unit tests. For our image files, we had an image classi-
fier that determined amilestone number for each snapshot [42]. The
milestone metric per snapshot is displayed as a small square color
indicator in the left timeline panel; runtime and compile errors are
assigned separate color indicators.

4.2 Classroom use
Pensieve is split into phases (Figure 1): first, a student works in their
own environment (a lab computer, personal laptop, or in-browser
app), which saves timestamped snapshots of their code progress.
The student then submits their work to a database, where optional
preprocessing occurs; for example, to generate and save snapshot
output for later review. Then, the teacher downloads and reviews
the student code submissions using Pensieve, and finally discusses
the code with the student in a classroom.

In our classroom, eight students are assigned to a teaching assis-
tant for the duration of the quarter; the teaching assistant’s weekly
responsibilities are to teach discussion sections and grade assign-
ment work. The graders download the student code from the course
database, typically a few days prior to the grading deadline, which
is a week after the student submission deadline. At the time of
grader download, Pensieve is already included as part of each stu-
dent folder. Any preprocessing to generate visual program output
or console output logs must be included in the student folders prior
to download; this is done to ensure that the grader can run Pensieve
as a lightweight tool on their own computers. The preprocessing
step to generate and save graphical output on three separate code
files for a 400-student class took about half a day. In the absence
of a course database or preprocessor, a teacher can simply drop
the Pensieve JAR into the assignment directory on the students’
computer. Once the JAR is within the correct directory, teachers
and students can navigate the timestamped code repository and
discuss coding tips and misconceptions.

Teachers in our classroom provide assignment feedback to their
students in twoways: the functional and style grades produced from
a fixed rubric, and an interactive grading (IG) session [37], where the
teacher and student sit down for a one-on-one, 15-minute session to
discuss the student’s code, any misconceptions, and tips to improve
for future assignments. Teachers can use Pensieve during these IG
sessions to identify, for example, places where students struggled
with concepts or showed good style habits, and to gain a holistic
view of how the student thought through the assignment. Grading
is done independently from IG session outcomes; the purpose of
the IG session is to maintain a conversation throughout the quarter
so that students are actively reflecting on their coding progress.

In addition to the teacher-facing version of Pensieve, we provide
a reduced version of the tool to the students so that they can look at
their prior work and revert back to a previous version if needed as
they work on the assignment; our tool at this point functions more
as a welcoming, light version control software for students.

5 EXPERIENCE
At the time of writing this report, Pensieve has been used in two
terms: Winter 2018 and Spring 2018. In the first term we refined the
tool and teacher training procedures. In the second term (which we
will refer to as the Experience Term), we evaluated the impact of
the tool for the 207 students who took CS1.

We sought to evaluate the impact of our tool in three ways: (1) a
formal qualitative analysis of how useful instructors found the tool,
(2) an official university survey on how useful students found the
tool, and (3) quantitative measures of performance on exams, time
to complete assignments and honor code violations. All evaluations

Table 1: (a) Positive teacher feedback; (b) ways to improve.

(a)

% Agree Item

90 Insights from Pensieve lead to
“more actionable and specific assistance”

70 Pensieve “is helpful for showing instructors
which students might need extra help”

− Data on how long it takes students to
complete assignments are “especially valuable”

(b)

% Agree Item

80 Want an option “to show only major changes in
code” to better prioritize information and feedback

75 Want more “student-facing features”
− “All of the data Pensieve presents is helpful

but can be overwhelming”

tell a consistent story of educational benefit that we expected to
see given the improved pedagogical benefits.

5.1 Student and Teacher Perceptions
At the end of the Experience Term, we asked students to provide
a Likert rating for the statement, “It was useful to see the process
of how I learned using Pensieve,” as part of their formal course
evaluation. Students on average strongly agreed (µ = 4.6/5,σ =
0.6). Furthermore, students gave a higher rating for the quality
of course instruction and feedback (µ = 4.8,σ = 0.4, where 5 =
Excellent, and 4 = Good) than in previous terms (µ = 4.6,σ = 0.4)
for the Experience Term instructor. Response rate was 70%.

To measure how useful teaching assistants found our tool, we re-
quested an external facilitator to conduct a small group instructional
diagnosis (SGID) [10]. External evaluators met with 31 teaching
assistants who used Pensieve in the Experience Term to discuss
(1) whether using the tool improved the teachers’ understanding
of student learning process in CS, (2) if there were ways to im-
prove the tool, and (3) if there were ways to improve how the tool
was used in the classroom. The evaluators solicited feedback and
consolidated major sentiments. To minimize bias, the instructor
and researchers were not present during the SGID. The teaching
assistants articulated that they found the tool to be useful, despite
it requiring more work on their part (Table 1). The feedback session
suggests that more teacher training or better highlighting within
the tool would improve the teacher experience.

5.2 Learning Analysis
In addition to measuring the perception of students and teachers,
we also place importance on quantifiable improvements in learning
outcomes. Under our hypothesis that Pensieve had a substantial
impact on student learning, we expected to see a notable change in
student performance.

All measures are between the Experience Term (N = 207 stu-
dents) where we deployed Pensieve and a Baseline Term with the
same instructor, lectures and assignments, but without using the

Pensieve tool (N = 498 students). The students in the Baseline Term
had significantlymoreCS background than in the Experience Term.
37.4% of students in the Baseline Term reported > 10 hours of pro-
gramming experience, vs 27.7% of students in the Experience Term.
The Experience Term was 52% female vs 51% female in the baseline.

In the Experience Term, we provided our tool to the entire class
(as opposed to running a randomized control trial), thus it is not
possible to report on the causal impact of using Pensieve. While
we could not observe causality, we can observe correlation. The
co-occurrence of using the tool and notable learning improvement
adds weight to our belief that the tool has a positive impact. To
assess the co-occurrence of learning gains, we measured changes in
(1) time spent on assignments after the Pensieve-assisted interactive
grading assignment (2) exam performance and (3) plagiarism.

Assignment time: We used student assignment completion
time as a pre-post measure of their ability to program. For each of
Assignments 1, 2, and 3, we used students’ intermediate progress
records to calculate how long the assignment took (Note: students
received the Pensieve “intervention” just before the due date for
Assignment 2). The Experience Term saw a significant decrease in
the number of hours spent on Assignment 3, the assignment due
after the intervention (from an average completion time of 7.0 hours
down to 6.3 hours, in Figure 3a). This decrease was particularly
large given that in the Experience Term, students were slower on
average to complete assignments prior to the Pensieve intervention.
To account for this difference we calculate how long students in the
Experience Term took to complete Assignment 3 (X3) compared to
their expected completion time had they been in the Baseline Term,
given how long they spent on Assignment 1 (X̂3 |X1):

Decrease in Assn 3 time = E[X̂3 |X1] − E[X3]
= 48 mins (p < 0.0001)

We observe an increase in Assignment 3 grades between the Base-
line and Experience Term, but the change is not significant (δ =
3.2pp, p = 0.07). Most students in the Baseline Term already re-
ceived high grades (µ = 98% in Baseline, µ = 101% in Experience).

Exam ability:On its own, the ability to complete an assignment
faster does not indicate that students have learned more. Another
measure is the difference in how well students performed on the
class midterm (given just after the due date for Assignment 3).
Since the exams were not identical we evaluated the difficulty (on
a consistent scale) of each exam question and used Item Response
Theory [17] to calculate a midterm “ability” score for each student,
which would be comparable across quarters. We define a student’s
score for each question on the midterm exam as Si, j = nj ·σ (ai −dj)
where Si, j is the score of student i on question j , nj is the number of
points on the question, dj is the difficulty of the question, and ai is
the ability of the student. We can then reverse calculate ability (ai)
given their observed score and problem difficulty. The difference in
exam ability between terms is shown in Figure 3b. Student midterm
abilities, measured on a scale from 0 to 10 increased from an average
of 6.9 to an average of 7.6 (p < 0.0001).

Plagiarism: One of the theorized impacts of using Pensieve
is that it would create a culture where plagiarism would be less
prevalent: it is much harder to cheat if you are going to be presented
with your process. For Assignment 3, trajectory-based plagiarism

Figure 3: The difference in performance between the Baseline Term and the Experience (Exp) Term, where we deployed Pen-
sieve. (a) Change in time to complete assignments. (b) Change in midterm ability. (c) Changes broken down for students with
High, Mid and Low levels of initial CS background for: (left) time to complete assignment 3 and (right) midterm ability. All
error bars are one standard error of the mean.

detection (TMOSS) shows a small decrease (from 4.3% of the class
down to 3.9%) compared against previously published numbers
from the same course [43].

Who benefits: Given that background knowledge outweighs
many other factors for predicting student performance in CS1, we
disaggregated our assignment time results and exam ability results
based on the prior knowledge of students. We split students into
three equal-sized terciles (Low, Mid, High) based on a background
statistic, computed as a weighted sum of normalized: reported hours
of experience (50%), Assignment 1 grade (30%) and Assignment 1
work time in hours (20%). Based on these splits we can see that the
benefits of Pensieve were mainly experienced by the Low tercile
(Figure 3c). The Mid tercile also had significant improvements;
however the top tercile had negligible changes in midterm ability
and assignment work time between the Baseline Term and the
Experience Term.

Despite these promising results with Pensieve, there are many un-
controllable, confounding factors. In particular, teaching assistants
are not required to use our tool, and it is highly likely that those who
effectively use the tool are more effective teachers to begin with.
Instead of taking our analysis as conclusive proof of the efficacy of
Pensieve, it is better to see these results as a positive indication that
such a tool improves the student learning experience.

6 BEST PRACTICES
In this section, we discuss best practices of Pensieve that were
gleaned from our continued use of the tool and the conversations
from the SGID sessions with teaching assistants.

When to use Pensieve: With the goal of developing student
metacognition at an early stage, deploy Pensieve for the first few
programming projects in a course. This enables teachers to iden-
tify process errors early on and recommend good programming
practices, and develop a student’s metacognition.

How to use Pensieve: Pensieve can be deployed in many ways.
We believe that it is most valuable when teacher and student sit
down together and use the tool to facilitate discussion. This type
of conversation helps a teacher identify struggling students early
on, so that they can be monitored and helped through the course.
In our experience, keeping these short sessions ungraded helps
to create an environment where students can ask questions about
their own learning. Alternatively, the tool could be used for remote

feedback, though we expect the missing human conversation will
limit the impact on student learning.

Teacher training: Since our goal was to use Pensieve in student-
teacher interactions, it is important to train teachers to use this
tool effectively. Instruct teachers to foster conversations with stu-
dents about problem solving techniques. We specifically focused
on teaching teachers how to talk about top down “decomposition"
and “iterative testing" [13]. We recommend teachers use the graphs
to efficiently find the most “important” snapshots of progress—
snapshots that illustrate conceptual changes.

Studentmessaging: Pensieveworks best with fine-grained code
snapshots of student process; naturally this brings up questions of
student privacy. When presenting the tool to students, we made
clear that our intentions were to help students learn as much as
possible. Just like in other classes, the more a student shows their
work the more helpful feedback a teacher can give. Similarly, when
introducing Pensieve to students, it is an opportunity to explain
that plagiarism is much more obvious when a teacher is looking at
one’s progress.

Currently, Pensieve is most valuable with a human teacher in the
feedback process. There are many potential extensions to the tool
that would add clearer information extraction and reduce teachers’
burden, such as highlighting notable trends on theWorkflow graphs
or code diffs between snapshots. Still, it is an important first step
in providing more formative, metacognitive feedback to students,
and paves the way for better automated feedback in the future.

7 CONCLUSION
Perhaps one of the most important things Pensieve brings to the
table is the ability to view progress in a tool that is useful for both
the teacher and the student. This is a way to begin the conversation
on metacognition—and a way to bring a human aspect back to
programming despite the size of classrooms. Given how much
time is needed to learn how to code, early feedback for beginning
programmers is a highly efficient use of scarce resources, even for
classrooms who do not have a low student-teacher ratio.

Students and teaching assistants had overwhelmingly positive
feedback about using Pensieve in the classroom, and the courses
where it was deployed had significant learning improvements. We
invite you to use and improve on this novel, open-source way to
give feedback on coding process.

REFERENCES
[1] Kirsti M. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education 15, 2 (2005), 83–102.
https://doi.org/10.1080/08993400500150747

[2] LorinW. Anderson and David R. Krathwohl (Eds.). 2001. A Taxonomy for Learning,
Teaching, and Assessing. A Revision of Bloom’s Taxonomy of Educational Objectives
(2 ed.). Allyn & Bacon, New York.

[3] Randy Elliot Bennett. 2011. Formative assessment: A critical review. Assessment
in Education: Principles, Policy & Practice 18, 1 (2011), 5–25.

[4] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the Role of
Self-Regulated Learning on Introductory Programming Performance. In Proceed-
ings of the first international workshop on Computing education research (ICER
’05). ACM, New York, NY, USA, 81–86. https://doi.org/10.1145/1089786.1089794

[5] Paul Black and Dylan Wiliam. 2009. Developing the theory of formative
assessment. Educational Assessment, Evaluation and Accountability(formerly:
Journal of Personnel Evaluation in Education) 21, 1 (23 Jan 2009), 5. https:
//doi.org/10.1007/s11092-008-9068-5

[6] David Boud and Elizabeth Molloy. 2013. Rethinking models of feedback for
learning: the challenge of design. Assessment & Evaluation in Higher Education
38, 6 (2013), 698–712. https://doi.org/10.1080/02602938.2012.691462

[7] John D. Bransford, Ann L. Brown, and Rodney R. Cocking. 2000. How People
Learn. National Academy Press.

[8] Tracey Bretag. 2013. Challenges in Addressing Plagiarism in Education. PLoS
Medicine 10, 12 (2013).

[9] David Carless, Diane Salter, Min Yang, and Joy Lam. 2011. Developing sustainable
feedback practices. Studies in Higher Education 36, 4 (2011), 395–407. https:
//doi.org/10.1080/03075071003642449

[10] D. Joseph Clark and Mark V. Redmond. 1982. Small group instructional diagnosis.
ERIC.

[11] Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek. 2007. Subverting the
Fundamentals Sequence: Using Version Control to Enhance Course Manage-
ment. In Proceedings of the 38th SIGCSE technical symposium on Computer science
education. ACM, 86–90.

[12] Quintin Cutts, Emily Cutts, Stephen Draper, Patrick O’Donnell, and Peter Saffrey.
2010. Manipulating Mindset to Positively Influence Introductory Programming
Performance. In Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (SIGCSE ’10). ACM, New York, NY, USA, 431–435. https://doi.
org/10.1145/1734263.1734409

[13] Nell B. Dale. 2006. Most difficult topics in CS1: results of an online survey of
educators. ACM SIGCSE Bulletin 38, 2 (2006), 49–53.

[14] Thanasis Daradoumis, Roxana Bassi, Fatos Xhafa, and Santi Caballé. 2013. A
Review on Massive E-Learning (MOOC) Design, Delivery and Assessment. 2013
Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (2013), 208–213.

[15] Carol Dweck. 2008. Mindsets and Math/Science Achievement. New York: Carnegie
Corporation of New York, Institute for Advanced Study, Commission on Mathe-
matics and Science Education, New York, NY, USA.

[16] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automati-
cally Grading Programming Assignments. SIGCSE Bull. 40, 3 (June 2008), 328–328.
https://doi.org/10.1145/1597849.1384371

[17] Susan E. Embretson and Steven P. Reise. 2013. Item response theory. Psychology
Press.

[18] Anneli Eteläpelto. 1993. Metacognition and the Expertise of Computer Program
Comprehension. Scandinavian Journal of Educational Research 37, 3 (1993), 243–
254. https://doi.org/10.1080/0031383930370305

[19] Peter Ferguson. 2011. Student perceptions of quality feedback in teacher ed-
ucation. Assessment & Evaluation in Higher Education 36, 1 (2011), 51–62.
https://doi.org/10.1080/02602930903197883

[20] Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernán-Losada, Jana Jackova, Essi Lahtinen, Tracy L. Lewis, Donna McGee
Thompson, Charles Riedesel, and Errol Thompson. 2007. Developing a Computer
Science-specific Learning Taxonomy. In Working Group Reports on ITiCSE on
Innovation and Technology in Computer Science Education (ITiCSE-WGR ’07). ACM,
New York, NY, USA, 152–170. https://doi.org/10.1145/1345443.1345438

[21] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). ACM, New York, NY, USA, 86–93. https:
//doi.org/10.1145/1930464.1930480

[22] Charles Juwah, Debra Macfarlane-Dick, Bob Matthew, David Nicol, David Ross,
and Brenda Smith. 2004. Enhancing student learning through effective formative
feedback. The Higher Education Academy 140 (2004).

[23] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a System-
atic Review of Automated Feedback Generation for Programming Exercises.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 41–46.
https://doi.org/10.1145/2899415.2899422

[24] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2010. Teaching Operating Systems
Using Virtual Appliances and Distributed Version Control. In Proceedings of the
41st SIGCSE technical symposium on Computer science education. ACM, 480–484.

[25] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. 2013. Git on the cloud in
the classroom. In Proceedings of the 44th ACM technical symposium on Computer
science education. ACM, 639–644.

[26] Michael J. Lee and Andrew J. Ko. 2011. Personifying Programming Tool Feedback
Improves Novice Programmers’ Learning. In Proceedings of the Seventh Interna-
tional Workshop on Computing Education Research (ICER ’11). ACM, New York,
NY, USA, 109–116. https://doi.org/10.1145/2016911.2016934

[27] Ying Liu, Eleni Stroulia, Kenny Wong, and Daniel German. 2004. CVS historical
information to understand how students develop software. In 26th International
Conference on Software Engineering. International Workshop on Mining Software
Repositories (MSR), 32–36.

[28] Dastyni Loksa, Andrew J. Ko, Will Jernigan, Alannah Oleson, Christopher J.
Mendez, and Margaret M. Burnett. 2016. Programming, Problem Solving, and
Self-Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York,
NY, USA, 1449–1461. https://doi.org/10.1145/2858036.2858252

[29] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind Your
Language: On Novices’ Interactions with Error Messages. In Proceedings of the
10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward! 2011). ACM, New York, NY, USA, 3–18.
https://doi.org/10.1145/2048237.2048241

[30] David J. Nicol and Debra Macfarlan-Dick. 2006. Formative assessment and
self-regulated learning: a model and seven principles of good feedback prac-
tice. Studies in Higher Education 31, 2 (2006), 199–218. https://doi.org/10.1080/
03075070600572090

[31] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. ACM, 153–160.

[32] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Programmers
in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference on
International Computing Education Research (ICER ’18). ACM, New York, NY, USA,
41–50. https://doi.org/10.1145/3230977.3230981

[33] Thomas W. Price, Neil C.C. Brown, Chris Piech, and Kelly Rivers. 2017. Sharing
and Using Programming Log Data (Abstract Only). In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17).
ACM, New York, NY, USA, 729–729. https://doi.org/10.1145/3017680.3022366

[34] Sarah Quinton and Teresa Smallbone. 2010. Feeding forward: using feedback
to promote student reflection and learning—a teaching model. Innovations in
Education and Teaching International 47, 1 (2010), 125–135. https://doi.org/10.
1080/14703290903525911

[35] Karen L. Reid and Gregory V. Wilson. 2005. Learning by Doing: Introducing
Version Control as a Way to Manage Student Assignments. In Proceedings of the
36th SIGCSE technical symposium on Computer science education. ACM, 272–276.

[36] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in
Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Artificial Intelligence in Education 27, 1 (01 Mar 2017), 37–64. https:
//doi.org/10.1007/s40593-015-0070-z

[37] Eric Roberts, John Lilly, and Bryan Rollins. 1995. Using Undergraduates as Teach-
ing Assistants in Introductory Programming Courses: An Update on the Stanford
Experience. In Proceedings of the twenty-sixth SIGCSE technical symposium on
Computer science education. ACM, 48–52.

[38] Kimberly Tanner. 2012. Promoting Student Metacognition. CBE Life Sciences
Education 11, 2 (2012), 113–120.

[39] Errol Thompson, Andrew Luxton-Reilly, Jacqueline L. Whalley, Minjie Hu, and
Phil Robbins. 2008. Bloom’s Taxonomy for CS Assessment. In Proceedings of the
Tenth Conference on Australasian Computing Education - Volume 78 (ACE ’08).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 155–161.
http://dl.acm.org/citation.cfm?id=1379249.1379265

[40] Peter Vamplew and Julian Dermoudy. 2005. An Anti-Plagiarism Editor for Soft-
ware Development Courses. In Proceedings of the 7th Australasian Conference on
Computing Education. 83–90.

[41] Fabienne M. Van der Kleij, Remco C. W. Feskens, and Theo J. H. M. Eggen. 2015.
Effects of Feedback in a Computer-Based Learning Environment on Students’
Learning Outcomes: A Meta-Analysis. Review of Educational Research 85, 4 (2015),
475–511. https://doi.org/10.3102/0034654314564881

[42] Lisa Yan, NickMcKeown, and Chris Piech. 2019. The PyramidSnapshot Challenge:
Understanding student process from visual output of programs. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, New York, NY, USA. https://doi.org/10.1145/3287324.3287386

[43] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: Using
Intermediate Assignment Work to Understand Excessive Collaboration in Large
Classes. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE ’18). ACM, New York, NY, USA, 110–115. https://doi.org/10.
1145/3159450.3159490

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1007/s11092-008-9068-5
https://doi.org/10.1080/02602938.2012.691462
https://doi.org/10.1080/03075071003642449
https://doi.org/10.1080/03075071003642449
https://doi.org/10.1145/1734263.1734409
https://doi.org/10.1145/1734263.1734409
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1080/0031383930370305
https://doi.org/10.1080/02602930903197883
https://doi.org/10.1145/1345443.1345438
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/2899415.2899422
https://doi.org/10.1145/2016911.2016934
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1080/03075070600572090
https://doi.org/10.1080/03075070600572090
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3017680.3022366
https://doi.org/10.1080/14703290903525911
https://doi.org/10.1080/14703290903525911
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
http://dl.acm.org/citation.cfm?id=1379249.1379265
https://doi.org/10.3102/0034654314564881
https://doi.org/10.1145/3287324.3287386
https://doi.org/10.1145/3159450.3159490
https://doi.org/10.1145/3159450.3159490

	Abstract
	1 Introduction
	2 Pedagogy and Motivation
	3 Related Work
	4 Pensieve Details
	4.1 Tool Implementation
	4.2 Classroom use

	5 Experience
	5.1 Student and Teacher Perceptions
	5.2 Learning Analysis

	6 Best practices
	7 Conclusion
	References

