
CS294A Lecture notes

Andrew Ng

Sparse autoencoder

1 Introduction

Supervised learning is one of the most powerful tools of AI, and has led to
automatic zip code recognition, speech recognition, self-driving cars, and a
continually improving understanding of the human genome. Despite its sig-
nificant successes, supervised learning today is still severely limited. Specifi-
cally, most applications of it still require that we manually specify the input
features x given to the algorithm. Once a good feature representation is
given, a supervised learning algorithm can do well. But in such domains as
computer vision, audio processing, and natural language processing, there’re
now hundreds or perhaps thousands of researchers who’ve spent years of their
lives slowly and laboriously hand-engineering vision, audio or text features.
While much of this feature-engineering work is extremely clever, one has to
wonder if we can do better. Certainly this labor-intensive hand-engineering
approach does not scale well to new problems; further, ideally we’d like to
have algorithms that can automatically learn even better feature representa-
tions than the hand-engineered ones.

These notes describe the sparse autoencoder learning algorithm, which
is one approach to automatically learn features from unlabeled data. In some
domains, such as computer vision, this approach is not by itself competitive
with the best hand-engineered features, but the features it can learn do turn
out to be useful for a range of problems (including ones in audio, text, etc).
Further, there’re more sophisticated versions of the sparse autoencoder (not
described in these notes, but that you’ll hear more about later in the class)
that do surprisingly well, and in many cases are competitive with or superior
to even the best hand-engineered representations.

1

These notes are organized as follows. We will first describe feedforward
neural networks and the backpropagation algorithm for supervised learning.
Then, we show how this is used to construct an autoencoder, which is an
unsupervised learning algorithm. Finally, we build on this to derive a sparse
autoencoder. Because these notes are fairly notation-heavy, the last page
also contains a summary of the symbols used.

2 Neural networks

Consider a supervised learning problem where we have access to labeled train-
ing examples (x(i), y(i)). Neural networks give a way of defining a complex,
non-linear form of hypotheses hW,b(x), with parameters W, b that we can fit
to our data.

To describe neural networks, we will begin by describing the simplest
possible neural network, one which comprises a single “neuron.” We will use
the following diagram to denote a single neuron:

This “neuron” is a computational unit that takes as input x1, x2, x3 (and
a +1 intercept term), and outputs hW,b(x) = f(W Tx) = f(

∑3
i=1Wixi + b),

where f : R 7→ R is called the activation function. In these notes, we will
choose f(·) to be the sigmoid function:

f(z) =
1

1 + exp(−z)
.

Thus, our single neuron corresponds exactly to the input-output mapping
defined by logistic regression.

Although these notes will use the sigmoid function, it is worth noting that
another common choice for f is the hyperbolic tangent, or tanh, function:

f(z) = tanh(z) =
ez − e−z

ez + e−z
, (1)

Here are plots of the sigmoid and tanh functions:

2

The tanh(z) function is a rescaled version of the sigmoid, and its output
range is [−1, 1] instead of [0, 1].

Note that unlike CS221 and (parts of) CS229, we are not using the con-
vention here of x0 = 1. Instead, the intercept term is handled separately by
the parameter b.

Finally, one identity that’ll be useful later: If f(z) = 1/(1 + exp(−z)) is
the sigmoid function, then its derivative is given by f ′(z) = f(z)(1 − f(z)).
(If f is the tanh function, then its derivative is given by f ′(z) = 1− (f(z))2.)
You can derive this yourself using the definition of the sigmoid (or tanh)
function.

2.1 Neural network formulation

A neural network is put together by hooking together many of our simple
“neurons,” so that the output of a neuron can be the input of another. For
example, here is a small neural network:

3

In this figure, we have used circles to also denote the inputs to the net-
work. The circles labeled “+1” are called bias units, and correspond to the
intercept term. The leftmost layer of the network is called the input layer,
and the rightmost layer the output layer (which, in this example, has only
one node). The middle layer of nodes is called the hidden layer, because
its values are not observed in the training set. We also say that our example
neural network has 3 input units (not counting the bias unit), 3 hidden
units, and 1 output unit.

We will let nl denote the number of layers in our network; thus nl = 3
in our example. We label layer l as Ll, so layer L1 is the input layer, and
layer Lnl

the output layer. Our neural network has parameters (W, b) =

(W (1), b(1),W (2), b(2)), where we writeW
(l)
ij to denote the parameter (or weight)

associated with the connection between unit j in layer l, and unit i in layer
l+1. (Note the order of the indices.) Also, b

(l)
i is the bias associated with unit

i in layer l+1. Thus, in our example, we have W (1) ∈ R3×3, and W (2) ∈ R1×3.
Note that bias units don’t have inputs or connections going into them, since
they always output the value +1. We also let sl denote the number of nodes
in layer l (not counting the bias unit).

We will write a
(l)
i to denote the activation (meaning output value) of

unit i in layer l. For l = 1, we also use a
(1)
i = xi to denote the i-th input.

Given a fixed setting of the parameters W, b, our neural network defines a
hypothesis hW,b(x) that outputs a real number. Specifically, the computation
that this neural network represents is given by:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1) (2)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2) (3)

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3) (4)

hW,b(x) = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1) (5)

In the sequel, we also let z
(l)
i denote the total weighted sum of inputs to unit

i in layer l, including the bias term (e.g., z
(2)
i =

∑n
j=1W

(1)
ij xj + b

(1)
i), so that

a
(l)
i = f(z

(l)
i).

Note that this easily lends itself to a more compact notation. Specifically,
if we extend the activation function f(·) to apply to vectors in an element-
wise fashion (i.e., f([z1, z2, z3]) = [f(z1), f(z2), f(z3)]), then we can write

4

Equations (2-5) more compactly as:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b(x) = a(3) = f(z(3))

More generally, recalling that we also use a(1) = x to also denote the values
from the input layer, then given layer l’s activations a(l), we can compute
layer l + 1’s activations a(l+1) as:

z(l+1) = W (l)a(l) + b(l) (6)

a(l+1) = f(z(l+1)) (7)

By organizing our parameters in matrices and using matrix-vector operations,
we can take advantage of fast linear algebra routines to quickly perform
calculations in our network.

We have so far focused on one example neural network, but one can
also build neural networks with other architectures (meaning patterns of
connectivity between neurons), including ones with multiple hidden layers.
The most common choice is a nl-layered network where layer 1 is the input
layer, layer nl is the output layer, and each layer l is densely connected to
layer l + 1. In this setting, to compute the output of the network, we can
successively compute all the activations in layer L2, then layer L3, and so on,
up to layer Lnl

, using Equations (6-7). This is one example of a feedforward
neural network, since the connectivity graph does not have any directed loops
or cycles.

Neural networks can also have multiple output units. For example, here
is a network with two hidden layers layers L2 and L3 and two output units
in layer L4:

5

To train this network, we would need training examples (x(i), y(i)) where
y(i) ∈ R2. This sort of network is useful if there’re multiple outputs that
you’re interested in predicting. (For example, in a medical diagnosis applica-
tion, the vector x might give the input features of a patient, and the different
outputs yi’s might indicate presence or absence of different diseases.)

2.2 Backpropagation algorithm

Suppose we have a fixed training set {(x(1), y(1)), . . . , (x(m), y(m))} of m train-
ing examples. We can train our neural network using batch gradient descent.
In detail, for a single training example (x, y), we define the cost function with
respect to that single example to be

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2 .

This is a (one-half) squared-error cost function. Given a training set of m
examples, we then define the overall cost function to be

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(8)

=

[
1

m

m∑
i=1

(
1

2

∥∥hW,b(x(i))− y(i)∥∥2)]+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
The first term in the definition of J(W, b) is an average sum-of-squares error
term. The second term is a regularization term (also called a weight de-
cay term) that tends to decrease the magnitude of the weights, and helps
prevent overfitting.1 The weight decay parameter λ controls the rela-
tive importance of the two terms. Note also the slightly overloaded notation:
J(W, b;x, y) is the squared error cost with respect to a single example; J(W, b)
is the overall cost function, which includes the weight decay term.

This cost function above is often used both for classification and for re-
gression problems. For classification, we let y = 0 or 1 represent the two class
labels (recall that the sigmoid activation function outputs values in [0, 1]; if

1Usually weight decay is not applied to the bias terms b
(l)
i , as reflected in our definition

for J(W, b). Applying weight decay to the bias units usually makes only a small different
to the final network, however. If you took CS229, you may also recognize weight decay
this as essentially a variant of the Bayesian regularization method you saw there, where we
placed a Gaussian prior on the parameters and did MAP (instead of maximum likelihood)
estimation.

6

we were using a tanh activation function, we would instead use -1 and +1
to denote the labels). For regression problems, we first scale our outputs to
ensure that they lie in the [0, 1] range (or if we were using a tanh activation
function, then the [−1, 1] range).

Our goal is to minimize J(W, b) as a function of W and b. To train

our neural network, we will initialize each parameter W
(l)
ij and each b

(l)
i to

a small random value near zero (say according to a N (0, ε2) distribution
for some small ε, say 0.01), and then apply an optimization algorithm such
as batch gradient descent. Since J(W, b) is a non-convex function, gradient
descent is susceptible to local optima; however, in practice gradient descent
usually works fairly well. Finally, note that it is important to initialize the
parameters randomly, rather than to all 0’s. If all the parameters start off at
identical values, then all the hidden layer units will end up learning the same
function of the input (more formally, W

(1)
ij will be the same for all values of

i, so that a
(2)
1 = a

(2)
2 = a

(2)
3 = . . . for any input x). The random initialization

serves the purpose of symmetry breaking.
One iteration of gradient descent updates the parameters W, b as follows:

W
(l)
ij := W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i := b

(l)
i − α

∂

∂b
(l)
i

J(W, b)

where α is the learning rate. The key step is computing the partial derivatives
above. We will now describe the backpropagation algorithm, which gives
an efficient way to compute these partial derivatives.

We will first describe how backpropagation can be used to compute
∂

∂W
(l)
ij

J(W, b;x, y) and ∂

∂b
(l)
i

J(W, b;x, y), the partial derivatives of the cost func-

tion J(W, b;x, y) defined with respect to a single example (x, y). Once we can
compute these, then by referring to Equation (8), we see that the derivative
of the overall cost function J(W, b) can be computed as

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij ,

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)).

The two lines above differ slightly because weight decay is applied to W but
not b.

7

The intuition behind the backpropagation algorithm is as follows. Given
a training example (x, y), we will first run a “forward pass” to compute
all the activations throughout the network, including the output value of the
hypothesis hW,b(x). Then, for each node i in layer l, we would like to compute

an “error term” δ
(l)
i that measures how much that node was “responsible”

for any errors in our output. For an output node, we can directly measure
the difference between the network’s activation and the true target value,
and use that to define δ

(nl)
i (where layer nl is the output layer). How about

hidden units? For those, we will compute δ
(l)
i based on a weighted average

of the error terms of the nodes that uses a
(l)
i as an input. In detail, here is

the backpropagation algorithm:

1. Perform a feedforward pass, computing the activations for layers L2,
L3, and so on up to the output layer Lnl

.

2. For each output unit i in layer nl (the output layer), set

δ
(nl)
i =

∂

∂z
(nl)
i

1

2
‖y − hW,b(x)‖2 = −(yi − a(nl)

i) · f ′(z(nl)
i)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2

For each node i in layer l, set

δ
(l)
i =

(
sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

)
f ′(z

(l)
i)

4. Compute the desired partial derivatives, which are given as:

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i .

Finally, we can also re-write the algorithm using matrix-vectorial nota-
tion. We will use “•” to denote the element-wise product operator (denoted
“.*” in Matlab or Octave, and also called the Hadamard product), so that
if a = b • c, then ai = bici. Similar to how we extended the definition of
f(·) to apply element-wise to vectors, we also do the same for f ′(·) (so that
f ′([z1, z2, z3]) = [∂

∂z1
f(z1),

∂
∂z2
f(z2),

∂
∂z3
f(z3)]). The algorithm can then be

written:

8

1. Perform a feedforward pass, computing the activations for layers L2,
L3, up to the output layer Lnl

, using Equations (6-7).

2. For the output layer (layer nl), set

δ(nl) = −(y − a(nl)) • f ′(z(n))

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2

Set
δ(l) =

(
(W (l))T δ(l+1)

)
• f ′(z(l))

4. Compute the desired partial derivatives:

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))T ,

∇b(l)J(W, b;x, y) = δ(l+1).

Implementation note: In steps 2 and 3 above, we need to compute f ′(z
(l)
i)

for each value of i. Assuming f(z) is the sigmoid activation function, we

would already have a
(l)
i stored away from the forward pass through the net-

work. Thus, using the expression that we worked out earlier for f ′(z), we

can compute this as f ′(z
(l)
i) = a

(l)
i (1− a(l)i).

Finally, we are ready to describe the full gradient descent algorithm. In
the pseudo-code below, ∆W (l) is a matrix (of the same dimension as W (l)),
and ∆b(l) is a vector (of the same dimension as b(l)). Note that in this
notation, “∆W (l)” is a matrix, and in particular it isn’t “∆ times W (l).” We
implement one iteration of batch gradient descent as follows:

1. Set ∆W (l) := 0, ∆b(l) := 0 (matrix/vector of zeros) for all l.

2. For i = 1 to m,

2a. Use backpropagation to compute ∇W (l)J(W, b;x, y) and
∇b(l)J(W, b;x, y).

2b. Set ∆W (l) := ∆W (l) +∇W (l)J(W, b;x, y).

2c. Set ∆b(l) := ∆b(l) +∇b(l)J(W, b;x, y).

9

3. Update the parameters:

W (l) := W (l) − α
[(

1

m
∆W (l)

)
+ λW (l)

]
b(l) := b(l) − α

[
1

m
∆b(l)

]
To train our neural network, we can now repeatedly take steps of gradient

descent to reduce our cost function J(W, b).

2.3 Gradient checking and advanced optimization

Backpropagation is a notoriously difficult algorithm to debug and get right,
especially since many subtly buggy implementations of it—for example, one
that has an off-by-one error in the indices and that thus only trains some of
the layers of weights, or an implementation that omits the bias term—will
manage to learn something that can look surprisingly reasonable (while per-
forming less well than a correct implementation). Thus, even with a buggy
implementation, it may not at all be apparent that anything is amiss. In
this section, we describe a method for numerically checking the derivatives
computed by your code to make sure that your implementation is correct.
Carrying out the derivative checking procedure described here will signifi-
cantly increase your confidence in the correctness of your code.

Suppose we want to minimize J(θ) as a function of θ. For this example,
suppose J : R 7→ R, so that θ ∈ R. In this 1-dimensional case, one iteration
of gradient descent is given by

θ := θ − α d

dθ
J(θ).

Suppose also that we have implemented some function g(θ) that purportedly
computes d

dθ
J(θ), so that we implement gradient descent using the update

θ := θ − αg(θ). How can we check if our implementation of g is correct?
Recall the mathematical definition of the derivative as

d

dθ
J(θ) = lim

ε→0

J(θ + ε)− J(θ − ε)
2ε

.

Thus, at any specific value of θ, we can numerically approximate the deriva-
tive as follows:

J(θ + EPSILON)− J(θ − EPSILON)

2× EPSILON

10

In practice, we set EPSILON to a small constant, say around 10−4. (There’s
a large range of values of EPSILON that should work well, but we don’t set
EPSILON to be “extremely” small, say 10−20, as that would lead to numerical
roundoff errors.)

Thus, given a function g(θ) that is supposedly computing d
dθ
J(θ), we can

now numerically verify its correctness by checking that

g(θ) ≈ J(θ + EPSILON)− J(θ − EPSILON)

2× EPSILON
.

The degree to which these two values should approximate each other will
depend on the details of J . But assuming EPSILON = 10−4, you’ll usually
find that the left- and right-hand sides of the above will agree to at least 4
significant digits (and often many more).

Now, consider the case where θ ∈ Rn is a vector rather than a single
real number (so that we have n parameters that we want to learn), and
J : Rn 7→ R. In our neural network example we used “J(W, b),” but one
can imagine “unrolling” the parameters W, b into a long vector θ. We now
generalize our derivative checking procedure to the case where θ may be a
vector.

Suppose we have a function gi(θ) that purportedly computes ∂
∂θi
J(θ);

we’d like to check if gi is outputting correct derivative values. Let θ(i+) =
θ + EPSILON× ~ei, where

~ei =

0
0
...
1
...
0

is the i-th basis vector (a vector of the same dimension as θ, with a “1”
in the i-th position and “0”s everywhere else). So, θ(i+) is the same as
θ, except its i-th element has been incremented by EPSILON. Similarly, let
θ(i−) = θ − EPSILON × ~ei be the corresponding vector with the i-th element
decreased by EPSILON. We can now numerically verify gi(θ)’s correctness by
checking, for each i, that:

gi(θ) ≈
J(θ(i+))− J(θ(i−))

2× EPSILON
.

When implementing backpropagation to train a neural network, in a cor-

11

rect implementation we will have that

∇W (l)J(W, b) =

(
1

m
∆W (l)

)
+ λW (l)

∇b(l)J(W, b) =
1

m
∆b(l).

This result shows that the final block of psuedo-code in Section 2.2 is indeed
implementing gradient descent. To make sure your implementation of gradi-
ent descent is correct, it is usually very helpful to use the method described
above to numerically compute the derivatives of J(W, b), and thereby verify
that your computations of

(
1
m

∆W (l)
)

+λW and 1
m

∆b(l) are indeed giving the
derivatives you want.

Finally, so far our discussion has centered on using gradient descent to
minimize J(θ). If you have implemented a function that computes J(θ) and
∇θJ(θ), it turns out there are more sophisticated algorithms than gradient
descent for trying to minimize J(θ). For example, one can envision an algo-
rithm that uses gradient descent, but automatically tunes the learning rate
α so as to try to use a step-size that causes θ to approach a local optimum
as quickly as possible. There are other algorithms that are even more so-
phisticated than this; for example, there are algorithms that try to find an
approximation to the Hessian matrix, so that it can take more rapid steps
towards a local optimum (similar to Newton’s method). A full discussion of
these algorithms is beyond the scope of these notes, but one example is the
L-BFGS algorithm. (Another example is conjugate gradient.) You will
use one of these algorithms in the programming exercise. The main thing you
need to provide to these advanced optimization algorithms is that for any θ,
you have to be able to compute J(θ) and ∇θJ(θ). These optimization algo-
rithms will then do their own internal tuning of the learning rate/step-size α
(and compute its own approximation to the Hessian, etc.) to automatically
search for a value of θ that minimizes J(θ). Algorithms such as L-BFGS and
conjugate gradient can often be much faster than gradient descent.

3 Autoencoders and sparsity

So far, we have described the application of neural networks to supervised
learning, in which we are have labeled training examples. Now suppose we
have only unlabeled training examples set {x(1), x(2), x(3), . . .}, where x(i) ∈
Rn. An autoencoder neural network is an unsupervised learning algorithm
that applies backpropagation, setting the target values to be equal to the
inputs. I.e., it uses y(i) = x(i).

12

Here is an autoencoder:

The autoencoder tries to learn a function hW,b(x) ≈ x. In other words, it
is trying to learn an approximation to the identity function, so as to output
x̂ that is similar to x. The identity function seems a particularly trivial
function to be trying to learn; but by placing constraints on the network,
such as by limiting the number of hidden units, we can discover interesting
structure about the data. As a concrete example, suppose the inputs x are
the pixel intensity values from a 10 × 10 image (100 pixels) so n = 100,
and there are s2 = 50 hidden units in layer L2. Note that we also have
y ∈ R100. Since there are only 50 hidden units, the network is forced to
learn a compressed representation of the input. I.e., given only the vector of
hidden unit activations a(2) ∈ R50, it must try to reconstruct the 100-pixel
input x. If the input were completely random—say, each xi comes from an
IID Gaussian independent of the other features—then this compression task
would be very difficult. But if there is structure in the data, for example, if
some of the input features are correlated, then this algorithm will be able to
discover some of those correlations.2

2In fact, this simple autoencoder often ends up learning a low-dimensional representa-
tion very similar to PCA’s.

13

Our argument above relied on the number of hidden units s2 being small.
But even when the number of hidden units is large (perhaps even greater
than the number of input pixels), we can still discover interesting structure,
by imposing other constraints on the network. In particular, if we impose
a sparsity constraint on the hidden units, then the autoencoder will still
discover interesting structure in the data, even if the number of hidden units
is large.

Informally, we will think of a neuron as being “active” (or as “firing”)
if its output value is close to 1, or as being “inactive” if its output value is
close to 0. We would like to constrain the neurons to be inactive most of the
time.3

Recall that a
(2)
j denotes the activation of hidden unit j in the autoencoder.

However, this notation doesn’t make explicit what was the input x that led
to that activation. Thus, we will write a

(2)
j (x) to denote the activation of this

hidden unit when the network is given a specific input x. Further, let

ρ̂j =
1

m

m∑
i=1

[
a
(2)
j (x(i))

]
be the average activation of hidden unit j (averaged over the training set).
We would like to (approximately) enforce the constraint

ρ̂j = ρ,

where ρ is a sparsity parameter, typically a small value close to zero (say
ρ = 0.05). In other words, we would like the average activation of each
hidden neuron j to be close to 0.05 (say). To satisfy this constraint, the
hidden unit’s activations must mostly be near 0.

To achieve this, we will add an extra penalty term to our optimization
objective that penalizes ρ̂j deviating significantly from ρ. Many choices of
the penalty term will give reasonable results. We will choose the following:

s2∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

.

Here, s2 is the number of neurons in the hidden layer, and the index j is
summing over the hidden units in our network. If you are familiar with the

3This discussion assumes a sigmoid activation function. If you are using a tanh activa-
tion function, then we think of a neuron as being inactive when it outputs values close to
-1.

14

concept of KL divergence, this penalty term is based on it, and can also be
written

s2∑
j=1

KL(ρ||ρ̂j),

where KL(ρ||ρ̂j) = ρ log ρ
ρ̂j

+ (1 − ρ) log 1−ρ
1−ρ̂j is the Kullback-Leibler (KL)

divergence between a Bernoulli random variable with mean ρ and a Bernoulli
random variable with mean ρ̂j. KL-divergence is a standard function for
measuring how different two different distributions are. (If you’ve not seen
KL-divergence before, don’t worry about it; everything you need to know
about it is contained in these notes.)

This penalty function has the property that KL(ρ||ρ̂j) = 0 if ρ̂j = ρ, and
otherwise it increases monotonically as ρ̂j diverges from ρ. For example, in
the figure below, we have set ρ = 0.2, and plotted KL(ρ||ρ̂j) for a range of
values of ρ̂j:

We see that the KL-divergence reaches its minimum of 0 at ρ̂j = ρ, and blows
up (it actually approaches ∞) as ρ̂j approaches 0 or 1. Thus, minimizing
this penalty term has the effect of causing ρ̂j to be close to ρ.

Our overall cost function is now

Jsparse(W, b) = J(W, b) + β

s2∑
j=1

KL(ρ||ρ̂j),

where J(W, b) is as defined previously, and β controls the weight of the
sparsity penalty term. The term ρ̂j (implicitly) depends on W, b also, because
it is the average activation of hidden unit j, and the activation of a hidden
unit depends on the parameters W, b.

To incorporate the KL-divergence term into your derivative calculation,
there is a simple-to-implement trick involving only a small change to your

15

code. Specifically, where previously for the second layer (l = 2), during
backpropagation you would have computed

δ
(2)
i =

(
s3∑
j=1

W
(3)
ji δ

(3)
j

)
f ′(z

(2)
i),

now instead compute

δ
(2)
i =

(
s3∑
j=1

W
(3)
ji δ

(3)
j

)
f ′(z

(2)
i) + β

(
− ρ
ρ̂i

+
1− ρ
1− ρ̂i

)
.

One subtlety is that you’ll need to know ρ̂i to compute this term. Thus,
you’ll need to compute a forward pass on all the training examples first
to compute the average activations on the training set, before computing
backpropagation on any example. If your training set is small enough to fit
comfortably in computer memory (this will be the case for the programming
assignment), you can compute forward passes on all your examples and keep
the resulting activations in memory and compute the ρ̂is. Then you can
use your precomputed activations to perform backpropagation on all your
examples. If your data is too large to fit in memory, you may have to scan
through your examples computing a forward pass on each to accumulate (sum
up) the activations and compute ρ̂i (discarding the result of each forward

pass after you have taken its activations a
(2)
i into account for computing ρ̂i).

Then after having computed ρ̂i, you’d have to redo the forward pass for each
example so that you can do backpropagation on that example. In this latter
case, you would end up computing a forward pass twice on each example in
your training set, making it computationally less efficient.

The full derivation showing that the algorithm above results in gradient
descent is beyond the scope of these notes. But if you implement the au-
toencoder using backpropagation modified this way, you will be performing
gradient descent exactly on the objective Jsparse(W, b). Using the derivative
checking method, you will be able to verify this for yourself as well.

4 Visualization

Having trained a (sparse) autoencoder, we would now like to visualize the
function learned by the algorithm, to try to understand what it has learned.
Consider the case of training an autoencoder on 10 × 10 images, so that

16

n = 100. Each hidden unit i computes a function of the input:

a
(2)
i = f

(
100∑
j=1

W
(1)
ij xj + b

(1)
i

)
.

We will visualize the function computed by hidden unit i—which depends on
the parameters W

(1)
ij (ignoring the bias term for now) using a 2D image. In

particular, we think of a
(1)
i as some non-linear feature of the input x. We ask:

What input image x would cause a
(1)
i to be maximally activated? For this

question to have a non-trivial answer, we must impose some constraints on
x. If we suppose that the input is norm constrained by ||x||2 =

∑100
i=1 x

2
i ≤ 1,

then one can show (try doing this yourself) that the input which maximally
activates hidden unit i is given by setting pixel xj (for all 100 pixels, j =
1, . . . , 100) to

xj =
W

(1)
ij√∑100

j=1(W
(1)
ij)2

.

By displaying the image formed by these pixel intensity values, we can begin
to understand what feature hidden unit i is looking for.

If we have an autoencoder with 100 hidden units (say), then we our
visualization will have 100 such images—one per hidden unit. By examining
these 100 images, we can try to understand what the ensemble of hidden
units is learning.

When we do this for a sparse autoencoder (trained with 100 hidden units
on 10x10 pixel inputs4) we get the following result:

4The results below were obtained by training on whitened natural images. Whitening
is a preprocessing step which removes redundancy in the input, by causing adjacent pixels
to become less correlated.

17

Each square in the figure above shows the (norm bounded) input image x
that maximally actives one of 100 hidden units. We see that the different hid-
den units have learned to detect edges at different positions and orientations
in the image.

These features are, not surprisingly, useful for such tasks as object recog-
nition and other vision tasks. When applied to other input domains (such
as audio), this algorithm also learns useful representations/features for those
domains too.

18

5 Summary of notation

x Input features for a training example, x ∈ Rn.
y Output/target values. Here, y can be vector valued. In the case

of an autoencoder, y = x.

(x(i), y(i)) The i-th training example
hW,b(x) Output of our hypothesis on input x, using parameters W, b.

This should be a vector of the same dimension as the target
value y.

W
(l)
ij The parameter associated with the connection between unit j

in layer l, and unit i in layer l + 1.

b
(l)
i The bias term associated with unit i in layer l + 1. Can also

be thought of as the parameter associated with the connection
between the bias unit in layer l and unit i in layer l + 1.

θ Our parameter vector. It is useful to think of this as the result
of taking the parameters W, b and “unrolling” them into a long
column vector.

a
(l)
i Activation (output) of unit i in layer l of the network. In addi-

tion, since layer L1 is the input layer, we also have a
(1)
i = xi.

f(·) The activation function. Throughout these notes, we used
f(z) = tanh(z).

z
(l)
i Total weighted sum of inputs to unit i in layer l. Thus, a

(l)
i =

f(z
(l)
i).

α Learning rate parameter
sl Number of units in layer l (not counting the bias unit).
nl Number layers in the network. Layer L1 is usually the input

layer, and layer Lnl
the output layer.

λ Weight decay parameter.
x̂ For an autoencoder, its output; i.e., its reconstruction of the

input x. Same meaning as hW,b(x).
ρ Sparsity parameter, which specifies our desired level of sparsity
ρ̂i The average activation of hidden unit i (in the sparse autoen-

coder).
β Weight of the sparsity penalty term (in the sparse autoencoder

objective).

19

